An interactive method for refractive water caustics rendering using color and depth textures

نویسندگان

  • Nuttachai Tipprasert
  • Pizzanu Kanongchaiyos
چکیده

Realistic rendering of underwater scenes is one of the most anticipated research topics in computer graphics. Caustics are the important component enhancing the realism of this kind of scenes. Unfortunately, rendering caustics is a time consuming task. As a result, most existing algorithms cannot handle this at interactive rate. In recent years, volumetric texture based rendering algorithms have been proposed. They can render the underwater scene with caustics in real-time. However, these algorithms require large amount of memory and are restricted to non-complex scene. In this paper we present a new interactive caustics rendering algorithm which require less memory usage. In our proposed method, we represent each object as a pair of color and depth texture. Color texture is used to store the object image viewed from viewing rays which refracted at water surface. We calculate the light intensity distribution on this image and store the result back to the color texture. The depth texture is used in the intensity calculation process to improve accuracy of the caustics patterns. Our experiment shows that proposed algorithm can handle complex underwater scene with caustics at interactive time rate. While using a pair of color and depth in stead of volumetric texture, we can reduce memory usage significantly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Rendering Method for Refractive and Reflective Caustics Due to Water Surfaces

In order to synthesize realistic images of scenes that include water surfaces, the rendering of optical effects caused by waves on the water surface, such as caustics and reflection, is necessary. However, rendering caustics is quite complex and time-consuming. In recent years, the performance of graphics hardware has made significant progress. This fact encourages researchers to study the acce...

متن کامل

A Fast Rendering Technique of Transparent Objects and Caustics

Rendering refractive caustics from transparent objects on opaque objects is computationally intensive. This paper presents a fast rendering technique for transparent objects and refractive caustics due to transparent objects on the opaque object. To calculate the intensities of caustics, we set virtual planes around the opaque object and store the intensities of caustics on the virtual planes a...

متن کامل

A Method for Fast Rendering of Caustics from Refraction by Transparent Objects

Caustics are patterns of light focused by reflective or refractive objects. Because of their visually fascinating patterns, several methods have been developed to render caustics. We propose a method for the quick rendering of caustics formed by refracted and converged light through transparent objects. First, in the preprocess, we calculate sampling rays incident on each vertex of the object, ...

متن کامل

Interactively Rendering Dynamic Caustics on GPU

In this paper, a new technique is presented for interactive rendering of caustics fully processed on GPU. Without any pre-computation required, the algorithm can directly render refractive caustics from complex deformable transparent objects onto an opaque receiver surface. By the technique we accurately trace the path of the photons and calculate the energy carried by the photons emitted from ...

متن کامل

General calculations using graphics hardware, with application to interactive caustics

Graphics hardware has been developed with image production in mind, but current hardware can be exploited for much more general computation. This paper shows that graphics hardware can perform general calculations, which accelerate the rendering process much earlier than at the latter image generation stages. An example is given of the real time calculation of refractive caustics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006